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INTRODUCTION
In this formulation, the WENO interpolation of the solution
and its derivatives are used to directly construct the numer-
ical flux, instead of the usual practice of reconstructing the
flux functions. This means that arbitrary monotone fluxes
can be used in this framework, while the traditional prac-
tice of reconstructing flux functions can be applied only to
smooth flux splitting. In this work, we improve the alter-
native WENO scheme by WENO-Z weights and verify the
accuracy of the improved alternative WENO scheme.

WENO INTERPOLATION
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Given the point values ui = u(xi) of a function u(x), we
need to find an approximation of u(x) at the half nodes
xi+ 1

2
using the polynomial interpolation. Find a unique

polynomial, p(x), which interpolates the function u(x), that
is, p(xj) = uj , at the mesh points xj , in the stencil.
For the small stencils,
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For the big stencil S,
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For smooth case, we wish
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where dk are the linear weights,
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Change the linear weights dk into the nonlinear weights ωk,

ωk =
αk∑2
s=0 αs

, k = 0, 1, 2, (5)
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, or αZ
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where βk are smoothness indicators of the stencil Sk, which
measures the smoothness of u(x) in stencil Sk, p is the pow-
er parameter, ε is the parameter to avoid the denominator
to be zero, and τ5 = |β0 − β2|. Usually, p = 2, ε = 10−12.

WENO INTERPOLATION
Here, the smoothness indicators are given by
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Thus, we get the WENO interpolation of u(x) at xi+ 1
2

as
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We denote u−
i+ 1

2

and u+

i+ 1
2

, respectively, for the big

stencils S = {xi−2, xi−1, xi, xi+1, xi+2} and S =

{xi−1, xi, xi+1, xi+2, xi+3}. In fact, the process to obtain
u+

i+ 1
2

is mirror-symmetric to that for u−
i+ 1

2

, with respect to

the target point xi+ 1
2

.

CONSTRUCTION OF THE SCHEME
Assuming that f(u) is a smooth function of u, we would
like to find a consistent numerical flux function, f̂i+ 1

2
=

f̂(ui−2, · · · , ui+3), such that the flux difference approxi-
mates the derivative f(u(x))x to 5-th order accuracy
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Here, we can use
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The first term of the numerical flux is approximated by
fi+ 1
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= h(u−
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, u+
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2

) with the values u±
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2

obtained by

the WENO interpolation. The two-argument function h is
a monotone flux, such as Godunov flux, Engquist-Osher
flux, Lax-Friedrichs flux, HLLC flux. We approximate the
remaining terms fxx
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, fxxxx
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2
, respectively, by sim-

ple central approximation,
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REMARK OF THE SCHEME
Together with third order TVD Runge-Kutta method, Roe
eigensystem, Lax-Friedrichs Riemann solver and HLLC
Riemann solver, the scheme is used for solving the hyper-
bolic conservation systems, such as Euler equations in this
work. For the higher dimensional problems, the scheme is
applied in the x- and y- directions respectively.

ACCURACY OF THE ALTERNATIVE SCHEME
Table 1: Accuracy on ut +ux = 0, x ∈ [−1, 1] with periodic
boundary condition and u(x, 0) = sin(πx) at t = 2.

WENO-JS-A WENO-Z-A
N L∞ error Order L∞ error Order
10 4.1e-2 — 9.6e-3 —
20 2.1e-3 4.29 3.0e-4 4.99
40 7.3e-5 4.84 9.5e-6 4.99
80 2.3e-6 4.98 3.0e-7 5.00

160 7.0e-8 5.05 9.4e-9 5.00

Table 2: Accuracy at the first-order critical point x = 0 of
f(x) = x3 + cos(x) with ε = 10−40, p = 2 and 64 digits.

WENO-JS-A WENO-Z-A
4x L∞ error Order L∞ error Order

1.00e-3 1.3e-9 — 1.6e-13 —
5.00e-4 1.6e-10 2.95 5.8e-15 4.80
2.50e-4 2.1e-11 2.98 1.9e-16 4.91
1.25e-4 1.6e-12 2.99 6.2e-18 4.96
6.25e-5 3.3e-13 3.00 2.0e-19 4.98

1D EULER EQUATIONS

Table 3: Accuracy on 1D Euler equations by the WENO-Z-
A scheme with different Riemann solvers, where the initial
condition is (ρ, u, P ) = (1 + 0.1 sin(πx), 1, 1).

Lax-Friedrichs solver HLLC solver
N L∞ error Order L∞ error Order
10 1.5e-3 — 7.9e-4 —
20 5.0e-5 4.93 2.2e-5 5.13
40 1.6e-6 4.99 7.0e-7 4.99
80 4.9e-8 4.98 2.2e-8 4.99

160 1.5e-9 5.00 6.9e-10 5.00

Consider the extended Shu-Osher problem (N = 800) to
show that the improved alternative WENO scheme is more
accurate than the other schemes. x
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2D PROBLEM
For 2D problem, take the DMR problem (800× 200) as an example.
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The colored contour of density (Left) and their "zoomed-in" graphs (Middle: WENO-JS-A, Right: WENO-Z-A) show that
the WENO-Z-A scheme captures the shocks more accurately than the WENO-JS-A scheme.

FUTURE WORK
Research on free-stream preserving alternative WENO
schemes and hybrid schemes on curvilinear meshes.
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